Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 6(10): 3328-3342, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33817414

RESUMO

The periodontium is an integrated, functional unit of multiple tissues surrounding and supporting the tooth, including but not limited to cementum (CM), periodontal ligament (PDL) and alveolar bone (AB). Periodontal tissues can be destructed by chronic periodontal disease, which can lead to tooth loss. In support of the treatment for periodontally diseased tooth, various biomaterials have been applied starting as a contact inhibition membrane in the guided tissue regeneration (GTR) that is the current gold standard in dental clinic. Recently, various biomaterials have been prepared in a form of tissue engineering scaffold to facilitate the regeneration of damaged periodontal tissues. From a physical substrate to support healing of a single type of periodontal tissue to multi-phase/bioactive scaffold system to guide an integrated regeneration of periodontium, technologies for scaffold fabrication have emerged in last years. This review covers the recent advancements in development of scaffolds designed for periodontal tissue regeneration and their efficacy tested in vitro and in vivo. Pros and Cons of different biomaterials and design parameters implemented for periodontal tissue regeneration are also discussed, including future perspectives.

2.
PLoS One ; 8(5): e64241, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691178

RESUMO

The gene for a Nudix enzyme (SP_1669) was found to code for a UDP-X diphosphatase. The SP_1669 gene is localized among genes encoding proteins that participate in cell division in Streptococcus pneumoniae. One of these genes, MurF, encodes an enzyme that catalyzes the last step of the Mur pathway of peptidoglycan biosynthesis. Mur pathway substrates are all derived from UDP-glucosamine and all are potential Nudix substrates. We showed that UDP-X diphosphatase can hydrolyze the Mur pathway substrates UDP-N-acetylmuramic acid and UDP-N-acetylmuramoyl-L-alanine. The 1.39 Å resolution crystal structure of this enzyme shows that it folds as an asymmetric homodimer with two distinct active sites, each containing elements of the conserved Nudix box sequence. In addition to its Nudix catalytic activity, the enzyme has a 3'5' RNA exonuclease activity. We propose that the structural asymmetry in UDP-X diphosphatase facilitates the recognition of these two distinct classes of substrates, Nudix substrates and RNA. UDP-X diphosphatase is a prototype of a new family of Nudix enzymes with unique structural characteristics: two monomers, each consisting of an N-terminal helix bundle domain and a C-terminal Nudix domain, form an asymmetric dimer with two distinct active sites. These enzymes function to hydrolyze bacterial cell wall precursors and degrade RNA.


Assuntos
Peptidoglicano/biossíntese , Monoéster Fosfórico Hidrolases/metabolismo , Streptococcus pneumoniae/enzimologia , Difosfato de Uridina/metabolismo , Sequência de Bases , Primers do DNA , Modelos Moleculares , Mutagênese Sítio-Dirigida , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética
3.
Nature ; 460(7258): 1011-5, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19587683

RESUMO

Recent advances in sequencing technologies have initiated an era of personal genome sequences. To date, human genome sequences have been reported for individuals with ancestry in three distinct geographical regions: a Yoruba African, two individuals of northwest European origin, and a person from China. Here we provide a highly annotated, whole-genome sequence for a Korean individual, known as AK1. The genome of AK1 was determined by an exacting, combined approach that included whole-genome shotgun sequencing (27.8x coverage), targeted bacterial artificial chromosome sequencing, and high-resolution comparative genomic hybridization using custom microarrays featuring more than 24 million probes. Alignment to the NCBI reference, a composite of several ethnic clades, disclosed nearly 3.45 million single nucleotide polymorphisms (SNPs), including 10,162 non-synonymous SNPs, and 170,202 deletion or insertion polymorphisms (indels). SNP and indel densities were strongly correlated genome-wide. Applying very conservative criteria yielded highly reliable copy number variants for clinical considerations. Potential medical phenotypes were annotated for non-synonymous SNPs, coding domain indels, and structural variants. The integration of several human whole-genome sequences derived from several ethnic groups will assist in understanding genetic ancestry, migration patterns and population bottlenecks.


Assuntos
Povo Asiático/genética , Genoma Humano/genética , Cromossomos Artificiais Bacterianos/genética , Hibridização Genômica Comparativa , Biologia Computacional , Humanos , Mutação INDEL/genética , Coreia (Geográfico) , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
4.
Development ; 135(6): 1059-68, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18256199

RESUMO

Aml1/Runx1 controls developmental aspects of several tissues, is a master regulator of blood stem cells, and plays a role in leukemia. However, it is unclear whether it functions in tissue stem cells other than blood. Here, we have investigated the role of Runx1 in mouse hair follicle stem cells by conditional ablation in epithelial cells. Runx1 disruption affects hair follicle stem cell activation, but not their maintenance, proliferation or differentiation potential. Adult mutant mice exhibit impaired de novo production of hair shafts and all temporary hair cell lineages, owing to a prolonged quiescent phase of the first hair cycle. The lag of stem cell activity is reversed by skin injury. Our work suggests a degree of functional overlap in Runx1 regulation of blood and hair follicle stem cells at an equivalent time point in the development of these two tissues.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Ensaio de Unidades Formadoras de Colônias , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Feminino , Marcação de Genes , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/lesões , Queratinócitos/citologia , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...